Ads
related to: mathematical induction method examples for kids
Search results
Results From The WOW.Com Content Network
Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Pages in category "Mathematical induction" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. ...
The truth of de Moivre's theorem can be established by using mathematical induction for natural numbers, and extended to all integers from there. For an integer n, call the following statement S(n): ( + ) = + . For n > 0, we proceed by mathematical induction.
Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .
Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.
Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. [1] [2] Inductive reasoning is in contrast to deductive reasoning (such as mathematical induction), where the conclusion of a deductive argument is certain, given the premises are correct; in contrast, the truth of the conclusion of an inductive ...
For example: In Peano arithmetic, second-order arithmetic and related systems, and indeed in most (not necessarily formal) mathematical treatments of the well-ordering principle, the principle is derived from the principle of mathematical induction, which is itself taken as basic.