When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result.

  3. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure (quadrature or squaring), as in the quadrature of the circle. The term is also sometimes used to describe the numerical solution of differential equations .

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation points. The Gauss–Legendre method based on s points has order 2s. [2] All Gauss–Legendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  5. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Gauss–Laguerre quadrature — extension of Gaussian quadrature for integrals with weight exp(−x) on [0, ∞] Gauss–Kronrod quadrature formula — nested rule based on Gaussian quadrature; Gauss–Kronrod rules; Tanh-sinh quadrature — variant of Gaussian quadrature which works well with singularities at the end points

  6. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...

  7. Nyström method - Wikipedia

    en.wikipedia.org/wiki/Nyström_method

    This discrete problem may be ill-conditioned, depending on the original problem and the chosen quadrature rule. Since the linear equations require () [citation needed] operations to solve, high-order quadrature rules perform better because low-order quadrature rules require large for a given accuracy. Gaussian quadrature is normally a good ...

  8. A College Student Just Solved a Notoriously Impossible Math ...

    www.aol.com/college-student-just-solved...

    A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...

  9. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    More generally, one can also consider integrands that have a known power-law singularity at x=0, for some real number >, leading to integrals of the form: + (). In this case, the weights are given [2] in terms of the generalized Laguerre polynomials: