When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Programming languages that implement matrices may have easy means for vectorization. In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well.

  3. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  4. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    This property is the reason that this matrix is referred to as the "swap operator" in the context of quantum information theory. Two explicit forms for the commutation matrix are as follows: if e r , j denotes the j -th canonical vector of dimension r (i.e. the vector with 1 in the j -th coordinate and 0 elsewhere) then

  5. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]

  6. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...

  7. Shift matrix - Wikipedia

    en.wikipedia.org/wiki/Shift_matrix

    Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa. As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in ...

  8. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    A circulant matrix is fully specified by one vector, , which appears as the first column (or row) of . The remaining columns (and rows, resp.) of C {\displaystyle C} are each cyclic permutations of the vector c {\displaystyle c} with offset equal to the column (or row, resp.) index, if lines are indexed from 0 {\displaystyle 0} to n − 1 ...

  9. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .