Search results
Results From The WOW.Com Content Network
With n, x, y, z ∈ N (meaning that n, x, y, z are all positive whole numbers) and n > 2, the equation x n + y n = z n has no solutions. Most popular treatments of the subject state it this way. It is also commonly stated over Z: [16] Equivalent statement 1: x n + y n = z n, where integer n ≥ 3, has no non-trivial solutions x, y, z ∈ Z.
The proof assumes a solution (x, y, z) to the equation x 3 + y 3 + z 3 = 0, where the three non-zero integers x, y, and z are pairwise coprime and not all positive. One of the three must be even, whereas the other two are odd. Without loss of generality, z may be assumed to be even.
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
The equation + = has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z > 2. The conjecture was formulated in 1993 by Andrew Beal , a banker and amateur mathematician , while investigating generalizations of Fermat's Last Theorem .
Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
The system is inconsistent (no solution) if and only if the last non-zero row in echelon form has only one non-zero entry that is in the last column (giving an equation 0 = c where c is a non-zero constant).