Search results
Results From The WOW.Com Content Network
Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (Though, magnetization continues to increase very slowly with the field due to paramagnetism.)
Whether or not that steel plate then acquires permanent magnetization depends on both the strength of the applied field and on the coercivity of that particular piece of steel (which varies with the steel's chemical composition and any heat treatment it may have undergone). In physics, multiple types of material magnetism have been distinguished.
Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized. Coercivity is usually measured in oersted or ampere/meter units and is denoted H C.
The magnetic field is often created by a current-carrying coil of wire around the core. The use of a magnetic core can increase the strength of magnetic field in an electromagnetic coil by a factor of several hundred times what it would be without the core. However, magnetic cores have side effects which must be taken into account.
A "horseshoe magnet" made of Alnico 5, about 1 inch high.The metal bar (bottom) is a keeper. A magnet keeper, also known historically as an armature, is a bar made from magnetically soft iron or steel, which is placed across the poles of a permanent magnet to help preserve the strength of the magnet by completing the magnetic circuit; it is important for magnets that have low magnetic ...
A simple electromagnet consisting of a coil of wire wrapped around an iron core. A core of ferromagnetic material like iron serves to increase the magnetic field created. [1] The strength of the magnetic field generated is proportional to the amount of current through the winding. [1]
The magnetic B field vector at a given point in space is specified by two properties: Its direction, which is along the orientation of a compass needle. Its magnitude (also called strength), which is proportional to how strongly the compass needle orients along that direction. In SI units, the strength of the magnetic B field is given in teslas ...
For a magnetic circuit constructed with an air gap or air gaps, the permeability of a hypothetical homogeneous material which would provide the same reluctance; (these "effective" above are sizes of a toroid core made from the same material which has the same magnetic properties as the core); Minimum cross-section, A min; Inductance factor, A L