Search results
Results From The WOW.Com Content Network
A Bethe lattice with coordination number z = 3. In statistical mechanics and mathematics, the Bethe lattice (also called a regular tree) is an infinite symmetric regular tree where all vertices have the same number of neighbors. The Bethe lattice was introduced into the physics literature by Hans Bethe in 1935.
In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models.It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model.
For site percolation on the square lattice, the value of p c is not known from analytic derivation but only via simulations of large lattices which provide the estimate p c = 0.59274621 ± 0.00000013. [7] A limit case for lattices in high dimensions is given by the Bethe lattice, whose threshold is at p c = 1 / z − 1 for a ...
A finite graded lattice is supersolvable if it admits a maximal chain of elements (called an M-chain or chief chain) obeying any of the following equivalent properties. For any chain c {\displaystyle \mathbf {c} } of elements, the smallest sublattice of L {\displaystyle L} containing all the elements of m {\displaystyle \mathbf {m} } and c ...
In statistical mechanics, bootstrap percolation is a percolation process in which a random initial configuration of active cells is selected from a lattice or other space, and then cells with few active neighbors are successively removed from the active set until the system stabilizes. The order in which this removal occurs makes no difference ...
A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A distributive lattice is modular. [3] 16. A modular complemented lattice is relatively complemented. [4] 17. A boolean algebra is relatively complemented. (1,15,16) 18. A relatively complemented lattice is a lattice. (def ...
Kenneth Geddes "Ken" Wilson (June 8, 1936 – June 15, 2013) was an American theoretical physicist and a pioneer in using computers for studying particle physics. He was awarded the 1982 Nobel Prize in Physics for his work on phase transitions—illuminating the subtle essence of phenomena like melting ice and emerging magnetism.
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.