When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Zernike polynomials3.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Zernike_polynomials3.pdf

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  4. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field F q ( x ) {\displaystyle \mathbf {F} _{q}(x)} , since the Frobenius endomorphism sends x ↦ x p {\displaystyle x\mapsto x^{p}} and therefore is not surjective.

  5. Splitting field - Wikipedia

    en.wikipedia.org/wiki/Splitting_field

    The splitting field of x q − x over F p is the unique finite field F q for q = p n. [2] Sometimes this field is denoted by GF(q). The splitting field of x 2 + 1 over F 7 is F 49; the polynomial has no roots in F 7, i.e., −1 is not a square there, because 7 is not congruent to 1 modulo 4. [3]

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    As every polynomial ring over a field is a unique factorization domain, every monic polynomial over a finite field may be factored in a unique way (up to the order of the factors) into a product of irreducible monic polynomials. There are efficient algorithms for testing polynomial irreducibility and factoring polynomials over finite fields.

  7. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  8. Linearised polynomial - Wikipedia

    en.wikipedia.org/wiki/Linearised_polynomial

    The map x ↦ L(x) is a linear map over any field containing F q.; The set of roots of L is an F q-vector space and is closed under the q-Frobenius map.; Conversely, if U is any F q-linear subspace of some finite field containing F q, then the polynomial that vanishes exactly on U is a linearised polynomial.

  9. Hilbert's basis theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_basis_theorem

    Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants. [1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.