Search results
Results From The WOW.Com Content Network
A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
The purpose of landmark detection in fashion images is for classification purposes. This aids in the retrieval of images with specified features from a database or general search. An example of a fashion landmark is the location of the hemline of a dress. Fashion landmark detection is particularly difficult due to the extreme deformation that ...
Multi-swarm optimization is a variant of particle swarm optimization (PSO) based on the use of multiple sub-swarms instead of one (standard) swarm. The general approach in multi-swarm optimization is that each sub-swarm focuses on a specific region while a specific diversification method decides where and when to launch the sub-swarms.
Particle swarm optimization (PSO) A swarm intelligence method. Intelligent water drops (IWD) A swarm-based optimization algorithm based on natural water drops flowing in rivers Gravitational search algorithm (GSA) A swarm intelligence method. Ant colony clustering method (ACCM) A method that make use of clustering approach, extending the ACO.
2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system. A map generated by a SLAM Robot. Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
Particle swarm optimization (PSO) is a global optimization algorithm for dealing with problems in which a best solution can be represented as a point or surface in an n-dimensional space. Hypotheses are plotted in this space and seeded with an initial velocity , as well as a communication channel between the particles.
The Boids model can be used for direct control and stabilization of teams of simple unmanned ground vehicles (UGV) [6] or micro aerial vehicles (MAV) [7] in swarm robotics. For stabilization of heterogeneous UAV-UGV teams, the model was adapted for using onboard relative localization by Saska et al. [ 8 ]
On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c 2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two ...