Search results
Results From The WOW.Com Content Network
The amount of stretch or compression along material line elements or fibers is the normal strain, and the amount of distortion associated with the sliding of plane layers over each other is the shear strain, within a deforming body. [2] This could be applied by elongation, shortening, or volume changes, or angular distortion. [3]
The stress and strain can be normal, shear, or a mixture, and can also be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress and ...
In a molecule, strain energy is released when the constituent atoms are allowed to rearrange themselves in a chemical reaction. [1] The external work done on an elastic member in causing it to distort from its unstressed state is transformed into strain energy which is a form of potential energy.
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
2.1 Uniaxial (1D) stress. 2.2 Multi-axial (2D or 3D) ... Stress; Strain. Finite strain; ... Volumetric component is responsible for change in volume without any ...
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume. [1] Other moduli describe the material's response to other kinds of stress: the shear modulus describes the response to shear stress, and Young's modulus describes the
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...