Search results
Results From The WOW.Com Content Network
where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...
where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =
Circle through exactly four points given by Schinzel's construction Schinzel proved this theorem by the following construction. If n {\displaystyle n} is an even number, with n = 2 k {\displaystyle n=2k} , then the circle given by the following equation passes through exactly n {\displaystyle n} points: [ 1 ] [ 2 ] ( x − 1 2 ) 2 + y 2 = 1 4 5 ...
In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians. Sides are also expressed in radians. A side (regarded as a great circle arc) is measured by the angle that it subtends at the centre.
In the special cases of one of the diagonals or sides being a diameter of the circle, this theorem gives rise directly to the angle sum and difference trigonometric identities. [17] The relationship follows most easily when the circle is constructed to have a diameter of length one, as shown here.
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have.In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation.
The number π (/ p aɪ /; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
where θ is half the sum of any two opposite angles. (The choice of which pair of opposite angles is irrelevant: if the other two angles are taken, half their sum is 180° − θ. Since cos(180° − θ) = −cos θ, we have cos 2 (180° − θ) = cos 2 θ.) This more general formula is known as Bretschneider's formula.