Search results
Results From The WOW.Com Content Network
Pseudocode is commonly used in textbooks and scientific publications related to computer science and numerical computation to describe algorithms in a way that is accessible to programmers regardless of their familiarity with specific programming languages.
The code in the previous section uses an unoptimized inner while loop for clarity. In the unoptimized version, one must perform five multiplications per iteration. To reduce the number of multiplications the following code for the inner while loop may be used instead:
Pseudocode is similar to skeleton programming, however deviates in the fact that pseudocode is primarily an informal method of programming. [3] Dummy code is also very similar to this, where code is used simply as a placeholder, or to signify the intended existence of a method in a class or interface.
In the following pseudocode, dist is an array that contains the current distances from the source to other vertices, i.e. dist[u] is the current distance from the source to the vertex u. The prev array contains pointers to previous-hop nodes on the shortest path from source to the given vertex (equivalently, it is the next-hop on the path from ...
A compiler may produce pseudo code that is then translated to machine code by a pseudo code definition in the target matchine code instruction. Pseudo code used in this way is an abstraction allowing the translation of a high level language to an intermediate pseudo code instruction set that can then be defined for a specific target: processor.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
AC-3 is expressed in pseudocode as follows: Input: A set of variables X A set of domains D(x) for each variable x in X. D(x) contains vx0, vx1... vxn, the possible values of x A set of unary constraints R1(x) on variable x that must be satisfied A set of binary constraints R2(x, y) on variables x and y that must be satisfied Output: Arc ...
The pseudo-code above will call output for all candidates that are a solution to the given instance P. The algorithm can be modified to stop after finding the first solution, or a specified number of solutions; or after testing a specified number of partial candidates, or after spending a given amount of CPU time.