Ad
related to: how to calculate the area of a circle with the radius of 10 feetamazon.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
The dot planimeter is physical device for estimating the area of shapes based on the same principle. It consists of a square grid of dots, printed on a transparent sheet; the area of a shape can be estimated as the product of the number of dots in the shape with the area of a grid square. [8]
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r, it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to ...
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.
In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.
As a unit of area, the circular mil can be converted to other units such as square inches or square millimetres. 1 circular mil is approximately equal to: 0.7854 square mils (1 square mil is about 1.273 circular mils) 7.854 × 10 −7 square inches (1 square inch is about 1.273 million circular mils) 5.067 × 10 −10 square metres
A circle containing one acre is cut by another whose center is on the circumference of the given circle, and the area common to both is one-half acre. Find the radius of the cutting circle. The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus.
where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =