Search results
Results From The WOW.Com Content Network
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
The reciprocal of ζ(3) (0.8319073725807... (sequence A088453 in the OEIS )) is the probability that any three positive integers , chosen at random, will be relatively prime , in the sense that as N approaches infinity, the probability that three positive integers less than N chosen uniformly at random will not share a common prime factor ...
The special case in which the integers whose reciprocals are taken must be square numbers appears in two ways in the context of right triangles. First, the sum of the reciprocals of the squares of the altitudes from the legs (equivalently, of the squares of the legs themselves) equals the reciprocal of the square of the altitude from the ...
Every n in M x can be written as n = m 2 r with positive integers m and r, where r is square-free. Since only the k primes p 1, ..., p k can show up (with exponent 1) in the prime factorization of r, there are at most 2 k different possibilities for r. Furthermore, there are at most √ x possible values for m.
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3 ≡ p (mod q) is solvable if and only if ...