Ads
related to: algebra 1 explained
Search results
Results From The WOW.Com Content Network
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Elementary algebra, also known as high school algebra or college algebra, [1] encompasses the basic concepts of algebra. It is often contrasted with arithmetic : arithmetic deals with specified numbers , [ 2 ] whilst algebra introduces variables (quantities without fixed values).
In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method. The word FOIL is an acronym for the four terms of the product: First ("first" terms of each binomial are multiplied together)
The ability to do algebra is a skill cultivated in mathematics education. As explained by Andrew Warwick, Cambridge University students in the early 19th century practiced "mixed mathematics", [105] doing exercises based on physical variables such as space, time, and weight.
These equations induce equivalence classes on the free algebra; the quotient algebra then has the algebraic structure of a group. Some structures do not form varieties, because either: It is necessary that 0 ≠ 1, 0 being the additive identity element and 1 being a multiplicative identity element, but this is a nonidentity;
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra, as established by the influence and works of Emmy Noether. [36] Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics.
Ad
related to: algebra 1 explained