Ad
related to: diagram and explain electron transport
Search results
Results From The WOW.Com Content Network
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
Furthermore, theories have been put forward to take into account the effects of vibronic coupling on electron transfer, in particular, the PKS theory of electron transfer. [10] In proteins, ET rates are governed by the bond structures: the electrons, in effect, tunnel through the bonds comprising the chain structure of the proteins. [11]
English: Diagram of the electron transport chain in the mitochondrial intermembrane space. Compared to the original this version has: Corrected stoichiometry, Cytochrome C is no longer inside the membrane, Complex II is now transmembrane, added electrons.
NADH and FADH 2 undergo oxidation in the electron transport chain by transferring an electrons to regenerate NAD + and FAD. Protons are pulled into the intermembrane space by the energy of the electrons going through the electron transport chain. Four electrons are finally accepted by oxygen in the matrix to complete the electron transport chain.
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol , a mobile electron carrier in the membrane.
Complex III itself is composed of several subunits, one of which is a b-type cytochrome while another one is a c-type cytochrome. Both domains are involved in electron transfer within the complex. Complex IV contains a cytochrome a/a3-domain that transfers electrons and catalyzes the reaction of oxygen to water.