Search results
Results From The WOW.Com Content Network
5 Angle formulas. 6 Parameshvara's ... In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single ...
In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). [ 1 ]
This more general formula is known as Bretschneider's formula. It is a property of cyclic quadrilaterals (and ultimately of inscribed angles) that opposite angles of a quadrilateral sum to 180°. Consequently, in the case of an inscribed quadrilateral, θ is 90°, whence the term
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
[15] [16] The right kites are exactly the kites that are cyclic quadrilaterals, meaning that there is a circle that passes through all their vertices. [17] The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well ...
A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.
A quadrilateral. In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.
A quadrilateral that is not a parallelogram has one and only one pedal point, called the Simson point, with respect to which the feet on the quadrilateral are collinear. [6] The Simson point of a trapezoid is the point of intersection of the two nonparallel sides. [7]: p. 186 No convex polygon with at least 5 sides has a Simson line. [8]