When.com Web Search

  1. Ad

    related to: mass and acceleration inversely proportional to force calculator graph equation

Search results

  1. Results From The WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Coulomb's law for the electric force between two stationary, electrically charged bodies has much the same mathematical form as Newton's law of universal gravitation: the force is proportional to the product of the charges, inversely proportional to the square of the distance between them, and directed along the straight line between them.

  5. Proportionality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportionality_(mathematics)

    The force, acting on a small object with small mass by a nearby large extended mass due to gravity, is directly proportional to the object's mass; the constant of proportionality between the force and the mass is known as gravitational acceleration. The net force acting on an object is proportional to the acceleration of that object with ...

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force; that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass. The SI unit for acceleration is metre per second squared (m⋅s −2, ).

  7. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    By Newton's second law, the cause of acceleration is a net force acting on the object, which is proportional to its mass m and its acceleration. The force, usually referred to as a centripetal force , has a magnitude [ 6 ] F c = m a c = m v 2 r {\displaystyle F_{c}=ma_{c}=m{\frac {v^{2}}{r}}} and is, like centripetal acceleration, directed ...

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Gravitational acceleration. In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the ...

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Newton defined the force acting on a planet to be the product of its mass and the acceleration (see Newton's laws of motion). So: Every planet is attracted towards the Sun. The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.