Search results
Results From The WOW.Com Content Network
Power flow calculated from AC voltage and current entering a load having a zero power factor (ϕ = 90°, cos(ϕ) = 0).The blue line shows the instantaneous power entering the load: all of the energy received during the first (or third) quarter cycle is returned to the grid during the second (or fourth) quarter cycle, resulting in an average power flow (light blue line) of zero.
AC power. The blinking of non-incandescent city lights is shown in this motion-blurred long exposure. The AC nature of the mains power is revealed by the dashed appearance of the traces of moving lights. In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit.
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current.
Scientists. v. t. e. In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2); kg/s 3 in base SI units.
Mathematics and basic principles of three-phase electric power. One voltage cycle of a three-phase system, labeled 0 to 360° (2π radians) along the time axis. The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power.
In electrical engineering, the maximum power transfer theorem states that, to obtain maximum external power from a power source with internal resistance, the resistance of the load must equal the resistance of the source as viewed from its output terminals. Moritz von Jacobi published the maximum power (transfer) theorem around 1840; it is also ...