When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    If every pair in a set of integers is coprime, then the set is said to be pairwise coprime (or pairwise relatively prime, mutually coprime or mutually relatively prime). Pairwise coprimality is a stronger condition than setwise coprimality; every pairwise coprime finite set is also setwise coprime, but the reverse is not true. For example, the ...

  3. Eisenstein reciprocity - Wikipedia

    en.wikipedia.org/wiki/Eisenstein_reciprocity

    Assume that is an odd prime, that + + = for pairwise relatively prime integers (i.e. in ) ,, and that . This is the first case of Fermat's Last Theorem. (The second case is when .

  4. Primal ideal - Wikipedia

    en.wikipedia.org/wiki/Primal_ideal

    In mathematics, an element a of a commutative ring R is called (relatively) prime to an ideal I if whenever ab is an element of I then b is also an element of I. A proper ideal I of a commutative ring A is said to be primal if the elements that are not prime to it form an ideal.

  5. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    It is convenient at this point (per Trautman 1998) to call a triple (a,b,c) standard if c > 0 and either (a,b,c) are relatively prime or (a/2,b/2,c/2) are relatively prime with a/2 odd. If the spinor [m n] T has relatively prime entries, then the associated triple (a,b,c) determined by is a standard triple. It follows that the action of the ...

  6. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  7. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The first step is relatively slow but only needs to be done once. Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime ...

  8. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.

  9. Carmichael's theorem - Wikipedia

    en.wikipedia.org/wiki/Carmichael's_theorem

    In number theory, Carmichael's theorem, named after the American mathematician R. D. Carmichael, states that, for any nondegenerate Lucas sequence of the first kind U n (P, Q) with relatively prime parameters P, Q and positive discriminant, an element U n with n ≠ 1, 2, 6 has at least one prime divisor that does not divide any earlier one except the 12th Fibonacci number F(12) = U 12 (1, − ...