Ads
related to: mathematical induction method examples for kids class 2
Search results
Results From The WOW.Com Content Network
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .
Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.
The truth of de Moivre's theorem can be established by using mathematical induction for natural numbers, and extended to all integers from there. For an integer n, call the following statement S(n): ( + ) = + . For n > 0, we proceed by mathematical induction.
In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction. The principle implies transfinite induction and recursion.
The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.