Search results
Results From The WOW.Com Content Network
For example, one may administer a test to a number of individuals. If it is assumed that each person's score (0 ≤ θ ≤ 1) is drawn from a population-level beta distribution, then an important statistic is the mean of this population-level distribution. The mean and sample size parameters are related to the shape parameters α and β via [3]
Beta regression is a form of regression which is used when the response variable, , takes values within (,) and can be assumed to follow a beta distribution. [1] It is generalisable to variables which takes values in the arbitrary open interval ( a , b ) {\displaystyle (a,b)} through transformations. [ 1 ]
The beta-binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with heterogeneity in the success probability. The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because ...
In statistics, standardized (regression) coefficients, also called beta coefficients or beta weights, are the estimates resulting from a regression analysis where the underlying data have been standardized so that the variances of dependent and independent variables are equal to 1. [1]
In typical use, it is a function of the test used (including the desired level of statistical significance), the assumed distribution of the test (for example, the degree of variability, and sample size), and the effect size of interest. High statistical power is related to low variability, large sample sizes, large effects being looked for ...
The idea was that the total species diversity in a landscape (γ) is determined by two different things: the mean species diversity at the local level (α) and the differentiation among local sites (β). Other formulations for beta diversity include "absolute species turnover", "Whittaker's species turnover" and "proportional species turnover".
The beta function is also important in statistics, e.g. for the beta distribution and beta prime distribution. As briefly alluded to previously, the beta function is closely tied with the gamma function and plays an important role in calculus.
In finance, the beta (β or market beta or beta coefficient) is a statistic that measures the expected increase or decrease of an individual stock price in proportion to movements of the stock market as a whole. Beta can be used to indicate the contribution of an individual asset to the market risk of a portfolio when it is