Search results
Results From The WOW.Com Content Network
Even in high-level languages, if the multiplier a is limited to √ m, then the double-width product ax can be computed using two single-width multiplications, and reduced using the techniques described above. To use Schrage's method, first factor m = qa + r, i.e. precompute the auxiliary constants r = m mod a and q = ⌊ m/a ⌋ = (m−r)/a.
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
G and A are not the same, so this LCS gets (using the "second property") the longest of the two sequences, LCS(R 1, C 0) and LCS(R 0, C 1). According to the table, both of these are empty, so LCS(R 1, C 1) is also empty, as shown in the table below.
A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …
Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in other words, assume that r j = s j a + t j b ...
The maximum period of the two LCGs used is calculated using the formula: [1] This equates to 2.1×10 9 for the two LCGs used. This CLCG shown in this example has a maximum period of: ( m 1 − 1 ) ( m 2 − 1 ) / 2 ≈ 2.3 × 10 18 {\displaystyle (m_{1}-1)(m_{2}-1)/2\approx 2.3\times 10^{18}} This represents a tremendous improvement over the ...
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that