When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    Even in high-level languages, if the multiplier a is limited to √ m, then the double-width product ax can be computed using two single-width multiplications, and reduced using the techniques described above. To use Schrage's method, first factor m = qa + r, i.e. precompute the auxiliary constants r = m mod a and q = ⌊ m/a ⌋ = (m−r)/a.

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  4. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    G and A are not the same, so this LCS gets (using the "second property") the longest of the two sequences, LCS(R 1, C 0) and LCS(R 0, C 1). According to the table, both of these are empty, so LCS(R 1, C 1) is also empty, as shown in the table below.

  5. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.

  6. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in other words, assume that r j = s j a + t j b ...

  8. Combined linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Combined_Linear_Congruenti...

    The maximum period of the two LCGs used is calculated using the formula: [1] This equates to 2.1×10 9 for the two LCGs used. This CLCG shown in this example has a maximum period of: ( m 1 − 1 ) ( m 2 − 1 ) / 2 ≈ 2.3 × 10 18 {\displaystyle (m_{1}-1)(m_{2}-1)/2\approx 2.3\times 10^{18}} This represents a tremendous improvement over the ...

  9. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that