When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]

  3. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    If m is a power of 2, then a − 1 should be divisible by 4 but not divisible by 8, i.e. a ≡ 5 (mod 8). [ 1 ] : §3.2.1.3 Indeed, most multipliers produce a sequence which fails one test for non-randomness or another, and finding a multiplier which is satisfactory to all applicable criteria [ 1 ] : §3.3.3 is quite challenging. [ 8 ]

  4. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa. The other four elements of the multiplicative group modulo 15, namely 1, 4 (which satisfies 4 ≡ 2 2 ≡ 8 2 ≡ 7 2 ≡ 13 2 {\displaystyle 4\equiv 2^{2 ...

  5. Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra

    Let n be a square-free positive integer, one not divisible by the square of an integer, for example 30 but not 12. The operations of greatest common divisor, least common multiple, and division into n (that is, ¬x = n/x), can be shown to satisfy all the Boolean laws when their arguments range over the positive divisors of n. Hence those ...

  6. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    The first thousand values of φ(n).The points on the top line represent φ(p) when p is a prime number, which is p − 1. [1]In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n.

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  8. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    This property is the key in the proof of the fundamental theorem of arithmetic. [note 2] It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains.

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Construct an ambiguous form (a, b, c) that is an element f ∈ G Δ of order dividing 2 to obtain a coprime factorization of the largest odd divisor of Δ in which Δ = −4ac or Δ = a(a − 4c) or Δ = (b − 2a)(b + 2a). If the ambiguous form provides a factorization of n then stop, otherwise find another ambiguous form until the ...