Ads
related to: cubic graph with 9 edges and 6 numbers and 3 letters practice worksheets
Search results
Results From The WOW.Com Content Network
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
Roughly speaking, each vertex represents a 3-jm symbol, the graph is converted to a digraph by assigning signs to the angular momentum quantum numbers j, the vertices are labelled with a handedness representing the order of the three j (of the three edges) in the 3-jm symbol, and the graph represents a sum over the product of all these numbers ...
In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.
The cube-connected cycles of order n is the Cayley graph of a group that acts on binary words of length n by rotation and flipping bits of the word. [1] The generators used to form this Cayley graph from the group are the group elements that act by rotating the word one position left, rotating it one position right, or flipping its first bit.
It is Hamiltonian, has chromatic number 3, chromatic index 3, radius 6, diameter 6 and girth 7. It is also a 3-vertex-connected and a 3-edge-connected graph. It has book thickness 3 and queue number 2. [1] It can be embedded in the genus-3 orientable surface (which can be represented as the Klein quartic), where it forms the Klein map with 24 ...
In the mathematical field of graph theory, the Barnette–Bosák–Lederberg graph is a cubic (that is, 3-regular) polyhedral graph with no Hamiltonian cycle, the smallest such graph possible. [1] It was discovered in the mid-1960s by Joshua Lederberg, David Barnette, and Juraj Bosák, after whom it is named. It has 38 vertices and 57 edges. [2 ...