Ad
related to: dan's step 6 7 worksheet 1 mole relationships
Search results
Results From The WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
This equation shows that 1 mole of iron(III) oxide and 2 moles of aluminum will produce 1 mole of aluminium oxide and 2 moles of iron. So, to completely react with 85.0 g of iron(III) oxide (0.532 mol), 28.7 g (1.06 mol) of aluminium are needed.
When one mole of water is added to a large volume of water at 25 °C, the volume increases by 18 cm 3. The molar volume of pure water would thus be reported as 18 cm 3 mol −1. However, addition of one mole of water to a large volume of pure ethanol results in an increase in volume of only 14 cm 3. The reason that the increase is different is ...
The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.
This "law" is just a special case of dimensional analysis in which an equation containing 6 dimensional quantities, ,,,,, , and 3 independent dimensions, [p], [v], [T] (independent means that "none of the dimensions of these quantities can be represented as a product of powers of the dimensions of the remaining quantities", [45] and ...
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
If the amount of substance in moles can be determined, then each of these thermodynamic properties may be expressed on a molar basis, and their name may be qualified with the adjective molar, yielding terms such as molar volume, molar internal energy, molar enthalpy, and molar entropy. The symbol for molar quantities may be indicated by adding ...