When.com Web Search

  1. Ad

    related to: diffraction grating calculate wavelength

Search results

  1. Results From The WOW.Com Content Network
  2. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  3. Blazed grating - Wikipedia

    en.wikipedia.org/wiki/Blazed_grating

    Since this condition can only exactly be achieved for one wavelength, it is specified for which blaze wavelength the grating is optimized (or blazed). The direction in which maximum efficiency is achieved is called the blaze angle and is the third crucial characteristic of a blazed grating directly depending on blaze wavelength and diffraction ...

  4. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction...

    Diffraction geometry, showing aperture (or diffracting object) plane and image plane, with coordinate system. If the aperture is in x ′ y ′ plane, with the origin in the aperture and is illuminated by a monochromatic wave, of wavelength λ, wavenumber k with complex amplitude A(x ′,y ′), and the diffracted wave is observed in the unprimed x,y-plane along the positive -axis, where l,m ...

  5. Free spectral range - Wikipedia

    en.wikipedia.org/wiki/Free_spectral_range

    The free spectral range of a diffraction grating is the largest wavelength range for a given order that does not overlap the same range in an adjacent order. If the ( m + 1)-th order of λ {\displaystyle \lambda } and m -th order of ( λ + Δ λ ) {\displaystyle (\lambda +\Delta \lambda )} lie at the same angle, then

  6. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    where m is the Bragg order (a positive integer), λ B the diffracted wavelength, Λ the fringe spacing of the grating, θ the angle between the incident beam and the normal (N) of the entrance surface and φ the angle between the normal and the grating vector (K G). Radiation that does not match Bragg's law will pass through the VBG undiffracted.

  7. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.

  8. Ultrasonic grating - Wikipedia

    en.wikipedia.org/wiki/Ultrasonic_grating

    An ultrasonic grating is a type of diffraction grating [1] produced by the interference of ultrasonic waves in a medium, which alters the physical properties of the medium (and hence the refractive index) in a grid-like pattern. The term acoustic grating is a more general term that includes operation at audible frequencies.

  9. Optical spectrometer - Wikipedia

    en.wikipedia.org/wiki/Optical_spectrometer

    The wavelength of light is then selected by the slit on the upper right corner. An optical spectrometer ( spectrophotometer , spectrograph or spectroscope ) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum , typically used in spectroscopic analysis to identify materials. [ 1 ]