Search results
Results From The WOW.Com Content Network
Vicuna LLM is an omnibus Large Language Model used in AI research. [1] Its methodology is to enable the public at large to contrast and compare the accuracy of LLMs "in the wild" (an example of citizen science) and to vote on their output; a question-and-answer chat format is used.
The MMLU consists of about 16,000 multiple-choice questions spanning 57 academic subjects including mathematics, philosophy, law, and medicine. It is one of the most commonly used benchmarks for comparing the capabilities of large language models, with over 100 million downloads as of July 2024. [1] [2]
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. The largest and most capable LLMs are generative pretrained transformers (GPTs).
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. Word2vec takes as its input a large corpus of text and produces a mapping of the set of words to a vector space , typically of several hundred dimensions , with each unique word in the corpus being assigned a vector in the space.
Other than language models, Vision MoE [36] is a Transformer model with MoE layers. They demonstrated it by training a model with 15 billion parameters. MoE Transformer has also been applied for diffusion models. [37] A series of large language models from Google used MoE. GShard [38] uses MoE with up to top-2 experts per layer. Specifically ...
Percentages higher than 85% usually indicate that the two languages being compared are likely to be related dialects. [1] The lexical similarity is only one indication of the mutual intelligibility of the two languages, since the latter also depends on the degree of phonetical, morphological, and syntactical similarity. The variations due to ...
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, [1] is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced ...