When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors. The series converges when r > r′.

  3. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/.../Associated_Legendre_polynomials

    In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation. or equivalently. where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on [−1, 1] only ...

  4. Legendre function - Wikipedia

    en.wikipedia.org/wiki/Legendre_function

    The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...

  5. Rodrigues' formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_formula

    In mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) generates the Legendre polynomials. It was independently introduced by Olinde Rodrigues (1816), Sir James Ivory (1824) and Carl Gustav Jacobi (1827). The name "Rodrigues formula" was introduced by Heine in 1878, after Hermite pointed out in 1865 that Rodrigues was ...

  6. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    In numerical analysis, Gauss–Legendre quadrature is a form of Gaussian quadrature for approximating the definite integral of a function. For integrating over the interval [−1, 1], the rule takes the form: where. n is the number of sample points used, wi are quadrature weights, and. xi are the roots of the n th Legendre polynomial.

  7. Legendre wavelet - Wikipedia

    en.wikipedia.org/wiki/Legendre_wavelet

    Legendre wavelet. In functional analysis, compactly supported wavelets derived from Legendre polynomials are termed Legendre wavelets or spherical harmonic wavelets. [ 1] Legendre functions have widespread applications in which spherical coordinate system is appropriate. [ 2][ 3][ 4] As with many wavelets there is no nice analytical formula for ...

  8. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    The classical orthogonal polynomials arise from a differential equation of the form. where Q is a given quadratic (at most) polynomial, and L is a given linear polynomial. The function f, and the constant λ, are to be found. (Note that it makes sense for such an equation to have a polynomial solution. Each term in the equation is a polynomial ...

  9. Plane-wave expansion - Wikipedia

    en.wikipedia.org/wiki/Plane-wave_expansion

    P ℓ are Legendre polynomials, and the hat ^ denotes the unit vector . In the special case where k is aligned with the z axis, e i k r cos ⁡ θ = ∑ ℓ = 0 ∞ ( 2 ℓ + 1 ) i ℓ j ℓ ( k r ) P ℓ ( cos ⁡ θ ) , {\displaystyle e^{ikr\cos \theta }=\sum _{\ell =0}^{\infty }(2\ell +1)i^{\ell }j_{\ell }(kr)P_{\ell }(\cos \theta ),} where ...