When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  3. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.

  4. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality

  5. Karamata's inequality - Wikipedia

    en.wikipedia.org/wiki/Karamata's_inequality

    The finite form of Jensen's inequality is a special case of this result. Consider the real numbers x 1, …, x n ∈ I and let := + + + denote their arithmetic mean.Then (x 1, …, x n) majorizes the n-tuple (a, a, …, a), since the arithmetic mean of the i largest numbers of (x 1, …, x n) is at least as large as the arithmetic mean a of all the n numbers, for every i ∈ {1, …, n − 1}.

  6. Ky Fan inequality - Wikipedia

    en.wikipedia.org/wiki/Ky_Fan_inequality

    One is an inequality involving the geometric mean and arithmetic mean of two sets of real numbers of the unit interval. The result was published on page 5 of the book Inequalities by Edwin F. Beckenbach and Richard E. Bellman (1961), who refer to an unpublished result of Ky Fan .

  7. Hölder's inequality - Wikipedia

    en.wikipedia.org/wiki/Hölder's_inequality

    The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. [1] Hölder's inequality holds even if ‖ fg ‖ 1 is infinite, the right-hand side also being infinite in that case.

  8. Young's inequality for products - Wikipedia

    en.wikipedia.org/wiki/Young's_inequality_for...

    Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...

  9. Variational inequality - Wikipedia

    en.wikipedia.org/wiki/Variational_inequality

    Prove the uniqueness of the given solution: this step implies the physical correctness of the problem, showing that the solution can be used to represent a physical phenomenon. It is a particularly important step since most of the problems modeled by variational inequalities are of physical origin. Find the solution or prove its regularity.