Search results
Results From The WOW.Com Content Network
A scoring matrix or a table of values is required for evaluating the significance of a sequence alignment, such as describing the probability of a biologically meaningful amino-acid or nucleotide residue-pair occurring in an alignment. Typically, when two nucleotide sequences are being compared, all that is being scored is whether or not two ...
In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. [1] Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix.
BLAT connects each homologous area between two sequences into a single larger alignment, in contrast to BLAST which returns each homologous area as a separate local alignment. The result of BLAST is a list of exons with each alignment extending just past the end of the exon. BLAT, however, correctly places each base of the mRNA onto the genome ...
In bioinformatics, BLAST (basic local alignment search tool) [3] is an algorithm and program for comparing primary biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA and/or RNA sequences. A BLAST search enables a researcher to compare a subject protein or nucleotide sequence (called a query ...
For proteins, this method usually involves two sets of parameters: a gap penalty and a substitution matrix assigning scores or probabilities to the alignment of each possible pair of amino acids based on the similarity of the amino acids' chemical properties and the evolutionary probability of the mutation. For nucleotide sequences, a similar ...
A sequence alignment of mammalian histone proteins. Sequences are the middle 120-180 amino acid residues of the proteins. Residues that are conserved across all sequences are highlighted in grey. The key below denotes conserved sequence (*), conservative mutations (:), semi-conservative mutations (.), and non-conservative mutations ( ). [2]
There are millions of protein and nucleotide sequences known. These sequences fall into many groups of related sequences known as protein families or gene families. Relationships between these sequences are usually discovered by aligning them together and assigning this alignment a score. There are two main types of sequence alignment.
The Smith–Waterman algorithm performs local sequence alignment; that is, for determining similar regions between two strings of nucleic acid sequences or protein sequences. Instead of looking at the entire sequence, the Smith–Waterman algorithm compares segments of all possible lengths and optimizes the similarity measure .