Search results
Results From The WOW.Com Content Network
SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
While the SVM model is primarily designed for binary classification, multiclass classification, and regression tasks, structured SVM broadens its application to handle general structured output labels, for example parse trees, classification with taxonomies, sequence alignment and many more.
This dataset includes 14,000 conversations with 81,000 question-answer pairs. Context, Question, Rewrite, Answer, Answer_URL, Conversation_no, Turn_no, Conversation_source Further details are provided in the project's GitHub repository and respective Hugging Face dataset card. Question Answering 2021 [336] Anantha and Vakulenko et al. UnifiedQA ...
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]
In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels.
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.