Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
The below code demonstrates the jit function's optimization through fusion. # imports from jax import jit import jax.numpy as jnp # define the cube function def cube ( x ): return x * x * x # generate data x = jnp . ones (( 10000 , 10000 )) # create the jit version of the cube function jit_cube = jit ( cube ) # apply the cube and jit_cube ...
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
Python is a high-level, general-purpose programming language that is popular in artificial intelligence. [1] It has a simple, flexible and easily readable syntax. [2] Its popularity results in a vast ecosystem of libraries, including for deep learning, such as PyTorch, TensorFlow, Keras, Google JAX.
SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies. [4] [5] [6] This ease of access combined with a simple and extensible code base in a well known language make SymPy a computer algebra system with a relatively low barrier to entry.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
Hyperdimensional computing (HDC) is an approach to computation, particularly artificial intelligence. HDC is motivated by the observation that the cerebellum cortex operates on high-dimensional data representations. [1] In HDC, information is thereby represented as a hyperdimensional (long) vector called a hypervector.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).