Search results
Results From The WOW.Com Content Network
The extended number line is often useful to describe the behavior of a function when either the argument or the function value gets "infinitely large" in some sense. For example, consider the function f {\displaystyle f} defined by
The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(x) to be the extended real number +, and likewise, if x is a negative infinite hyperreal number, set st(x) to be (the idea is that an infinite hyperreal number should be smaller than the "true" absolute ...
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain . Real-valued functions of a real variable (commonly called real functions ) and real-valued functions of several real variables are the main object of study of calculus and ...
A complex-valued function of a real variable may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x) is such a complex valued function, it may be decomposed as f(x) = g(x) + ih(x), where g and h are real-valued functions. In other words ...
In convex analysis, a branch of mathematics, the effective domain extends of the domain of a function defined for functions that take values in the extended real number line [,] = {}. In convex analysis and variational analysis , a point at which some given extended real -valued function is minimized is typically sought, where such a point is ...
The following is an example of a possible implementation of Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime. The initial guess will be x 0 = 1 and the function will be f ( x ) = x 2 − 2 so that f ′ ( x ) = 2 x .