Search results
Results From The WOW.Com Content Network
A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.
Properties. Convex, cyclic, equilateral, isogonal, isotoxal. In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek -derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Polygon. Some polygons of different kinds: open (excluding its boundary), boundary only (excluding interior), closed (including both boundary and interior), and self-intersecting. In geometry, a polygon (/ ˈpɒlɪɡɒn /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal ...
The sum of the internal angle and the external angle on the same vertex is π radians (180°). The sum of all the internal angles of a simple polygon is π (n −2) radians or 180 (n –2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180 ...
Constructible polygon. In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are ...
In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...
Hexagonal tiling. In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling). English mathematician John Conway called it a hextille.