When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. International Prototype of the Kilogram - Wikipedia

    en.wikipedia.org/wiki/International_prototype_of...

    Pa = N/m 2 = kg/(m s) J = N m = kg m 2 /s 2; W = J/s = N m/s = kg m 2 /s 3; Furthermore, prior to the revision the SI base unit of electric current, the ampere (A), was defined as the current needed to produce a force of 0.2 μN between 2 parallel wires 1 m apart for every metre of length. Substituting these parameters into Ampère's force law ...

  3. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.

  4. Pound (mass) - Wikipedia

    en.wikipedia.org/wiki/Pound_(mass)

    The equivalence for the pound was given as 1 lb = 453.592 65 g or 0.45359 kg, which made the kilogram equivalent to about 2.204 6213 lb. In 1883, it was determined jointly by the standards department of the British Board of Trade and the Bureau International that 0.453 592 4277 kg was a better approximation, and this figure, rounded to 0.453 ...

  5. Lists of physics equations - Wikipedia

    en.wikipedia.org/wiki/Lists_of_physics_equations

    In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.

  6. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  7. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    The second stage should provide a of 4,700 meters per second (15,000 ft/s); / = 0.648, therefore 64.8% of the remaining mass has to be propellant, which is 16.2% of the original total mass, and 8.7% remains for the tank and engines of the second stage, the payload, and in the case of a space shuttle, also the orbiter.

  8. International System of Units - Wikipedia

    en.wikipedia.org/wiki/International_System_of_Units

    1 kg = ⁠ (299 792 458) 2 / (6.626 070 15 × 10 −34)(9 192 631 770) ⁠ ⁠ h Δν Cs / c 2 ⁠. All units in the SI can be expressed in terms of the base units, and the base units serve as a preferred set for expressing or analysing the relationships between units.

  9. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.