Search results
Results From The WOW.Com Content Network
Physical properties; Phase at ... Plutonium is a chemical element; ... The nuclear properties of plutonium-239 were also studied; researchers found that when it is ...
Various oxidation states of plutonium in solution. Plutonium compounds are compounds containing the element plutonium (Pu). At room temperature, pure plutonium is silvery in color but gains a tarnish when oxidized. [1] The element displays four common ionic oxidation states in aqueous solution and one rare one: [2] Pu(III), as Pu 3+ (blue lavender)
Physical properties; ... Spectral lines of plutonium: Other properties; Natural occurrence: from decay: Crystal structure ... (chemical elements).
Plutonium hexafluoride is the highest fluoride of plutonium, and is of interest for laser enrichment of plutonium, in particular for the production of pure plutonium-239 from irradiated uranium. This isotope of plutonium is needed to avoid premature ignition of low-mass nuclear weapon designs by neutrons produced by spontaneous fission of ...
Plutonium-240 has a high rate of spontaneous fission, raising the background neutron radiation of plutonium. Plutonium is graded by proportion of 240 Pu: weapons grade (<7%), fuel grade (7–19%) and reactor grade (>19%). Lower grades are less suited for bombs and thermal reactors but can fuel fast reactors.
Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years. [1]
The odd numbered fissile plutonium isotopes present in spent nuclear fuel, such as Pu-239, decrease significantly as a percentage of the total composition of all plutonium isotopes (which was 1.11% in the first example above) as higher and higher burnups take place, while the even numbered non-fissile plutonium isotopes (e.g. Pu-238, Pu-240 and ...
Plutonium nitride can be prepared by the reaction of plutonium hydrides with nitrogen or ammonia at a temperature of 650 °C and a pressure of 0.3 kPa. [3] Another method to prepare plutonium nitride is from the reduction of plutonium(III) iodide with sodium in liquid ammonia: PuI 3 + NH 3 + 3Na → PuN + 3NaI