Search results
Results From The WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.
Adiabatic cooling towers spray water into the incoming air or onto a cardboard pad to cool the air before it passes over an air-cooled heat exchanger. Adiabatic cooling towers use less water than other cooling towers but do not cool the fluid as close to the wet bulb temperature. Most adiabatic cooling towers are also hybrid cooling towers.
Through the combustion of fuel, heat is added in a constant volume (isochoric process) process (2-3), followed by an adiabatic expansion process power (3-4 and colored red) stroke. The cycle is closed by the exhaust (4-0 and colored blue) stroke, characterized by isochoric cooling and isobaric compression processes. Temperature-Entropy diagram
A line drawn on a thermodynamic diagram along which an air parcel moves as it ascends or descends through the atmosphere, cooling or warming adiabatically; the path followed by this line depends on whether it is a dry adiabat or a saturated adiabat. [1] adiabatic cooling
An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...
Vapor-compression refrigeration [6] For comparison, a simple stylized diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor (Note that this diagram is flipped vertically and horizontally compared to the previous one) [7] Temperature–entropy diagram of the vapor-compression cycle.
isochoric then adiabatic Manson and Manson-Guise engines: Stoddard: adiabatic: isobaric: adiabatic: isobaric Power cycles normally with internal combustion: Atkinson: isentropic: isochoric: isentropic: isochoric Differs from Otto cycle in that V 1 < V 4. Brayton: adiabatic: isobaric: adiabatic: isobaric Ramjets, turbojets, -props, and -shafts ...
The P–alpha diagram shows a strong deformation of the grid for atmospheric conditions and is therefore not useful in atmospheric sciences. The three diagrams are constructed from the P–alpha diagram by using appropriate coordinate transformations. Not a thermodynamic diagram in a strict sense, since it does not display the energy–area ...