When.com Web Search

  1. Ad

    related to: how to calculate megameters equation formula excel

Search results

  1. Results From The WOW.Com Content Network
  2. Orders of magnitude (length) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(length)

    Scale model at megameters of the main Solar System bodies. To help compare different orders of magnitude, this section lists lengths starting at 10 8 meters (100 megameters or 100,000 kilometers or 62,150 miles). 102 Mm – diameter of HD 149026 b, an unusually dense Jovian planet; 115 Mm – width of Saturn's Rings

  3. Nash–Sutcliffe model efficiency coefficient - Wikipedia

    en.wikipedia.org/wiki/Nash–Sutcliffe_model...

    In some applications such as automatic calibration or machine learning, the NSE lower limit of (−∞) creates problems. To eliminate this problem and re-scale the NSE to lie solely within the range of {0,1} normalization, use the following equation that yields a Normalized Nash–Sutcliffe Efficiency (NNSE) [6] [7]

  4. Formula editor - Wikipedia

    en.wikipedia.org/wiki/Formula_editor

    A formula editor is a computer program that is used to typeset mathematical formulas and mathematical expressions. Formula editors typically serve two purposes: They allow word processing and publication of technical content either for print publication, or to generate raster images for web pages or screen presentations.

  5. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  6. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  7. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    The following equation can be used to correct a measured pollutant concentration in an emitted gas (containing a measured CO 2 content) to an equivalent pollutant concentration in an emitted gas containing a specified reference amount of CO 2: [5]

  8. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  9. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .