Search results
Results From The WOW.Com Content Network
Mitochondrial ROS can promote cellular senescence and aging phenotypes in the skin of mice. [11] Ordinarily mitochondrial SOD2 protects against mitochondrial ROS. Epidermal cells in mutant mice with a genetic SOD2 deficiency undergo cellular senescence, nuclear DNA damage, and irreversible arrest of proliferation in a portion of their keratinocytes.
The application of a mitochondrial-specific ROS scavenger, which lead to a significant longevity of the mice studied, [91] suggests that mitochondria may still be well-implicated in ageing. Extensive research is being conducted to further investigate this link and methods to combat ageing.
The theory implicates the mitochondria as the chief target of radical damage, since there is a known chemical mechanism by which mitochondria can produce ROS, mitochondrial components such as mtDNA are not as well protected as nuclear DNA, and by studies comparing damage to nuclear and mtDNA that demonstrate higher levels of radical damage on ...
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O 2 H), superoxide (O 2 −), [1] hydroxyl radical (OH.), and singlet oxygen. [2] ROS are pervasive because they are readily produced from O 2, which is ...
During ATP production electrons can escape the mitochondrion and react with water, producing reactive oxygen species, ROS for short. ROS can damage macromolecules, including lipids, proteins and DNA, which is thought to facilitate the process of ageing. Electron transport chain in the inner mitochondrial membrane
As a member of the iron/manganese superoxide dismutase family, this protein transforms toxic superoxide, a byproduct of the mitochondrial electron transport chain, into hydrogen peroxide and diatomic oxygen. [5] This function allows SOD2 to clear mitochondrial reactive oxygen species (ROS) and, as a result, confer protection against cell death. [7]
Reactive oxygen species are present in low concentrations in seawater and are produced primarily through the photolysis of organic and inorganic matter. [12] However, the biological production of ROS, generated through algal photosynthesis and subsequently 'leaked' to the environment, can contribute significantly to concentrations in the water ...
CD36 (cluster of differentiation 36), also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene.