Ad
related to: supratentorial flair hyperintensities mri screening ultrasound images
Search results
Results From The WOW.Com Content Network
Fluid-attenuated inversion recovery (FLAIR) is a magnetic resonance imaging sequence with an inversion recovery set to null fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [ 1 ]
Fluid-attenuated inversion recovery (FLAIR) [2] is an inversion-recovery pulse sequence used to nullify the signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid so as to bring out periventricular hyperintense lesions, such as multiple sclerosis plaques.
These small regions of high intensity are observed on T2 weighted MRI images (typically created using 3D FLAIR) within cerebral white matter (white matter lesions, white matter hyperintensities or WMH) [1] [2] or subcortical gray matter (gray matter hyperintensities or GMH). The volume and frequency is strongly associated with increasing age. [2]
ARIA MRI Classification Criteria [11] ARIA Type Radiographic Severity Mild Moderate Severe ARIA-E Edema: FLAIR hyperintensity confined to sulcus and/or cortex/subcortical white matter in one location < 5 cm FLAIR hyperintensity 5 to 10 cm, or more than 1 site of involvement, each measuring < 10 cm
Fluid attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH) is a radiographic marker seen on brain imaging in acute ischaemic stroke. FVH can be used as a proxy for slow leptomeningeal collateral blood flow, and may help reveal which areas of brain tissue are potentially salvageable.
Axial T2 FLAIR sequence MR image of a middle-aged man with leukoaraiosis. MRI image: Leukoaraiosis in a 90-year-old patient with cerebral atrophy. Head CT showing periventricular white matter lesions. Leukoaraiosis is a particular abnormal change in appearance of white matter near the lateral ventricles. It is often seen in aged individuals ...
The 4D imaging modality adds time as a dimension to the 3D image. There are many applications of 4D PC-MRI, including the ability to examine blood flow patterns. This is particularly helpful for cardiac and aortic imaging, but the major limitation remains the image acquisition time.
Using high field MRI system, with several variants several areas show lesions, and can be spacially classified in infratentorial, callosal, juxtacortical, periventricular, and other white matter areas. [21] Other authors simplify this in three regions: intracortical, mixed gray-white matter, and juxtacortical. [22]