Search results
Results From The WOW.Com Content Network
An initial value problem is a differential equation ′ = (, ()) with : where is an open set of , together with a point in the domain of (,),called the initial condition.. A solution to an initial value problem is a function that is a solution to the differential equation and satisfies
For the equation and initial value problem: ′ = (,), = if and / are continuous in a closed rectangle = [, +] [, +] in the plane, where and are real (symbolically: ,) and denotes the Cartesian product, square brackets denote closed intervals, then there is an interval = [, +] [, +] for some where the solution to the above equation and initial ...
It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:
In general, let be a value that is to be determined numerically, in the case of this article, for example, the value of the solution function of an initial value problem at a given point. A numerical method, for example a one-step method, calculates an approximate value v ~ ( h ) {\displaystyle {\tilde {v}}(h)} for this, which depends on the ...
For instance, the differential equation dy / dt = y 2 with initial condition y(0) = 1 has the solution y(t) = 1/(1-t), which is not defined at t = 1. Nevertheless, if f is a differentiable function defined over a compact subset of R n, then the initial value problem has a unique solution defined over the entire R. [6]
A linear matrix difference equation of the homogeneous (having no constant term) form + = has closed form solution = predicated on the vector of initial conditions on the individual variables that are stacked into the vector; is called the vector of initial conditions or simply the initial condition, and contains nk pieces of information, n being the dimension of the vector X and k = 1 being ...
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
In all these cases, y is an unknown function of x (or of x 1 and x 2), and f is a given function. He solves these examples and others using infinite series and discusses the non-uniqueness of solutions. Jacob Bernoulli proposed the Bernoulli differential equation in 1695. [3] This is an ordinary differential equation of the form