Search results
Results From The WOW.Com Content Network
Maximum and minimum. Largest and smallest value taken by a function at a given point. Local and global maxima and minima for cos (3π x)/ x, 0.1≤ x ≤1.1. In mathematical analysis, the maximum and minimum[a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, [b] they may be ...
In mathematics, Fermat's theorem (also known as interior extremum theorem) is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function's derivative is zero at that point). Fermat's theorem is a theorem in real analysis, named after ...
Derivative test. In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function. The usefulness of derivatives to find extrema is ...
Calculus. The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. [a] Functionals are often expressed as definite integrals involving ...
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.
Mathematical optimization. Graph of a surface given by z = f (x, y) = − (x ² + y ²) + 4. The global maximum at (x, y, z) = (0, 0, 4) is indicated by a blue dot. Nelder-Mead minimum search of Simionescu's function. Simplex vertices are ordered by their values, with 1 having the lowest ( best) value. Mathematical optimization (alternatively ...
Calculus. In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus —the study of the area beneath a curve. [2]
Extreme value theorem. A continuous function on the closed interval showing the absolute max (red) and the absolute min (blue). In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval , then must attain a maximum and a minimum, each at least once.