Search results
Results From The WOW.Com Content Network
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
Addition is a binary operation, which means it has two operands.In C++, the arguments being passed are the operands, and the temp object is the returned value.. The operation could also be defined as a class method, replacing lhs by the hidden this argument; However, this forces the left operand to be of type Time:
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.
The same function name is used for more than one function definition in a particular module, class or namespace; The functions must have different type signatures, i.e. differ in the number or the types of their formal parameters (as in C++) or additionally in their return type (as in Ada).
In computer science, dynamic dispatch is the process of selecting which implementation of a polymorphic operation (method or function) to call at run time.It is commonly employed in, and considered a prime characteristic of, object-oriented programming (OOP) languages and systems.
Method overriding, in object-oriented programming, is a language feature that allows a subclass or child class to provide a specific implementation of a method that is already provided by one of its superclasses or parent classes.
Impredicative polymorphism (also called first-class polymorphism) is the most powerful form of parametric polymorphism. [1]: 340 In formal logic, a definition is said to be impredicative if it is self-referential; in type theory, it refers to the ability for a type to be in the domain of a quantifier it contains. This allows the instantiation ...
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .