Search results
Results From The WOW.Com Content Network
Ethyl acetate (systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula CH 3 CO 2 CH 2 CH 3, simplified to C 4 H 8 O 2.This flammable, colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, and the decaffeination process of tea and coffee.
for Ethyl Acetate/Acetic acid [3] P = 740 mmHg BP Temp. °C % by mole C 4 H 8 O 2; liquid vapor ... for Ethyl Acetate/Ethanol [3] P = 760 mmHg BP Temp. °C % by mole ...
[1] [2] It is an important type of alkaline hydrolysis. When the carboxylate is long chain, its salt is called a soap. The saponification of ethyl acetate gives sodium acetate and ethanol: C 2 H 5 O 2 CCH 3 + NaOH → C 2 H 5 OH + NaO 2 CCH 3
Ortho esters are readily hydrolyzed in mild aqueous acid to form esters: . RC(OR ′) 3 + H 2 O → RCO 2 R ′ + 2 R ′ OH. For example, trimethyl orthoformate CH(OCH 3) 3 may be hydrolyzed (under acidic conditions) to methyl formate and methanol; [5] and may be further hydrolyzed (under alkaline conditions) to salts of formic acid and methanol.
Ester hydrolysis is an organic reaction which hydrolyzes an ester to a carboxylic acid or carboxylate, and an alcohol. It can be performed with acid as catalyst, or with base as reagent. It can be performed with acid as catalyst, or with base as reagent.
Acetoacetic ester synthesis is a chemical reaction where ethyl acetoacetate is alkylated at the α-carbon to both carbonyl groups and then converted into a ketone, or more specifically an α-substituted acetone. This is very similar to malonic ester synthesis. Acetoacetic ester synthesis equation
The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a Lewis base that forms 1:1 adducts with a variety of Lewis acids.
The hydrolysis of oximes proceeds easily by heating in the presence of various inorganic acids, and the oximes decompose into the corresponding ketones or aldehydes, and hydroxylamines. The reduction of oximes by sodium metal, [ 10 ] sodium amalgam , hydrogenation , or reaction with hydride reagents produces amines . [ 11 ]