Search results
Results From The WOW.Com Content Network
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of degree two. Bivectors have applications in many areas of mathematics and physics.
An example of a null field is a plane electromagnetic wave in Minkowski space. A non-null field is characterised by P 2 + Q 2 ≠ 0 {\displaystyle P^{2}+Q^{2}\neq \,0} . If P ≠ 0 = Q {\displaystyle P\neq 0=Q} , there exists an inertial reference frame for which either the electric or magnetic field vanishes.
T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per ...
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
Examples of geometric algebras applied in physics include the spacetime algebra (and the less common algebra of physical space). Geometric calculus , an extension of GA that incorporates differentiation and integration , can be used to formulate other theories such as complex analysis and differential geometry , e.g. by using the Clifford ...
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
The torque or curl is then a normal vector field in this 3rd dimension. By contrast, geometric algebra in 2 dimensions defines these as a pseudoscalar field (a bivector), without requiring a 3rd dimension. Similarly, the scalar triple product is ad hoc, and can instead be expressed uniformly using the exterior product and the geometric product.
In 1 dimension (a trivial example), the single spinor representation is formally Majorana, a real 1-dimensional representation that does not transform. In 2 Euclidean dimensions, the left-handed and the right-handed Weyl spinor are 1-component complex representations, i.e. complex numbers that get multiplied by e ±iφ/2 under a rotation by ...