When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.

  3. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  4. Hamilton's optico-mechanical analogy - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_optico...

    Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. [1] It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.

  5. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    In that case, the time derivative in the HJE must be a constant, usually denoted (), giving the separated solution = (,, …,) where the time-independent function () is sometimes called the abbreviated action or Hamilton's characteristic function [5]: 434 and sometimes [9]: 607 written (see action principle names).

  6. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.

  7. William Rowan Hamilton - Wikipedia

    en.wikipedia.org/wiki/William_Rowan_Hamilton

    Numerous other concepts and objects in mechanics, such as Hamilton's principle, Hamilton's principal function, the Hamilton–Jacobi equation, Cayley-Hamilton theorem are named after Hamilton. The Hamiltonian is the name of both a function (classical) and an operator (quantum) in physics, and, in a different sense, a term from graph theory .

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Hamilton's principle is still valid even if the coordinates L is expressed in are not independent, here r k, but the constraints are still assumed to be holonomic. [37] As always the end points are fixed δr k (t 1) = δr k (t 2) = 0 for all k. What cannot be done is to simply equate the coefficients of δr k to zero because the δr k are not ...

  9. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The solutions to the Hamilton–Jacobi equations for this Hamiltonian are then the same as the geodesics on the manifold. In particular, the Hamiltonian flow in this case is the same thing as the geodesic flow .