Search results
Results From The WOW.Com Content Network
Ferromagnetic materials are magnetic in the absence of an applied magnetic field. When a magnetic field is absent the material has spontaneous magnetization which is a result of the ordered magnetic moments; that is, for ferromagnetism, the atoms are symmetrical and aligned in the same direction creating a permanent magnetic field.
Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can ...
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .
The same situations that create magnetic fields—charge moving in a current or in an atom, and intrinsic magnetic dipoles—are also the situations in which a magnetic field has an effect, creating a force. Following is the formula for moving charge; for the forces on an intrinsic dipole, see magnetic dipole.
For many paramagnetic materials, the magnetization of the material is directly proportional to an applied magnetic field, for sufficiently high temperatures and small fields. However, if the material is heated, this proportionality is reduced. For a fixed value of the field, the magnetic susceptibility is inversely proportional to temperature ...
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
The samples, in the presence of an applied magnetic field, were cooled below their superconducting transition temperature, whereupon the samples cancelled nearly all interior magnetic fields. They detected this effect only indirectly because the magnetic flux is conserved by a superconductor: when the interior field decreases, the exterior ...
The KBF creates a static pressure field that is symmetric about a magnet, e.g., a line dipole, that produces a curl-free force field, i.e., curl(ℑ) = 0 for constant temperature flow. Such a symmetric field does not alter the velocity. However, if the temperature distribution about the imposed magnetic field is asymmetric, so is the KBF in ...