When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    However, the Hamiltonian still exists. In the case where the cometric is degenerate at every point q of the configuration space manifold Q, so that the rank of the cometric is less than the dimension of the manifold Q, one has a sub-Riemannian manifold. The Hamiltonian in this case is known as a sub-Riemannian Hamiltonian. Every such ...

  3. Nambu mechanics - Wikipedia

    en.wikipedia.org/wiki/Nambu_mechanics

    In mathematics, Nambu mechanics is a generalization of Hamiltonian mechanics involving multiple Hamiltonians. Recall that Hamiltonian mechanics is based upon the flows generated by a smooth Hamiltonian over a symplectic manifold. The flows are symplectomorphisms and hence obey Liouville's theorem.

  4. Weinstein conjecture - Wikipedia

    en.wikipedia.org/wiki/Weinstein_conjecture

    In this case, the Hamiltonian flow is a Reeb vector field on that level set. It is a fact that any contact manifold (M,α) can be embedded into a canonical symplectic manifold, called the symplectization of M, such that M is a contact type level set (of a canonically defined Hamiltonian) and the Reeb vector field is a Hamiltonian flow. That is ...

  5. Momentum map - Wikipedia

    en.wikipedia.org/wiki/Momentum_map

    An -action on a symplectic manifold (,) is called Hamiltonian if it is symplectic and if there exists a momentum map. A momentum map is often also required to be G {\displaystyle G} -equivariant , where G {\displaystyle G} acts on g ∗ {\displaystyle {\mathfrak {g}}^{*}} via the coadjoint action , and sometimes this requirement is included in ...

  6. Symplectic geometry - Wikipedia

    en.wikipedia.org/wiki/Symplectic_geometry

    Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. [1] The term "symplectic", introduced by Hermann Weyl, [2] is a calque of "complex"; previously, the "symplectic group" had been called the "line complex ...

  7. Hamiltonian vector field - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_vector_field

    In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton , a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics .

  8. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In ergodic theory and dynamical systems, motivated by the physical considerations given so far, there is a corresponding result also referred to as Liouville's theorem.In Hamiltonian mechanics, the phase space is a smooth manifold that comes naturally equipped with a smooth measure (locally, this measure is the 6n-dimensional Lebesgue measure).

  9. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    Thus, the time evolution of a function on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e., canonical transformations, area-preserving diffeomorphisms), with the time being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian.