When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wadim Zudilin - Wikipedia

    en.wikipedia.org/wiki/Wadim_Zudilin

    He has reproved Apéry's theorem that ζ(3) is irrational, and expanded it. Zudilin proved that at least one of the four numbers ζ(5), ζ(7), ζ(9), or ζ(11) is irrational. [2] For that accomplishment, he won the Distinguished Award of the Hardy-Ramanujan Society in 2001. [3]

  3. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Dov Jarden gave a simple non-constructive proof that there exist two irrational numbers a and b, such that a b is rational: [28] [29] Consider √ 2 √ 2; if this is rational, then take a = b = √ 2. Otherwise, take a to be the irrational number √ 2 √ 2 and b = √ 2. Then a b = (√ 2 √ 2) √ 2 = √ 2 √ 2 · √ 2 = √ 2 2 = 2 ...

  5. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  6. Hurwitz's theorem (number theory) - Wikipedia

    en.wikipedia.org/wiki/Hurwitz's_theorem_(number...

    In number theory, Hurwitz's theorem, named after Adolf Hurwitz, gives a bound on a Diophantine approximation.The theorem states that for every irrational number ξ there are infinitely many relatively prime integers m, n such that | | <.

  7. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  8. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    This shows that any irrational number has irrationality measure at least 2. The Thue–Siegel–Roth theorem says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2.

  9. 11 (number) - Wikipedia

    en.wikipedia.org/wiki/11_(number)

    11 is a prime number, and a super-prime. 11 forms a twin prime with 13, [6] and sexy pair with 5 and 17. The first prime exponent that does not yield a Mersenne prime is 11. 11 is part of a pair of Brown numbers. Only three such pairs of numbers are known. [citation needed] Rows in Pascal's triangle can be seen as representation of powers of 11 ...