When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  4. Odlyzko–Schönhage algorithm - Wikipedia

    en.wikipedia.org/wiki/Odlyzko–Schönhage_algorithm

    Gourdon, X., Numerical evaluation of the Riemann Zeta-function Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height Odlyzko, A. (1992), The 10 20 -th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and ...

  5. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    Z function in the complex plane, plotted with a variant of domain coloring. Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half.

  6. Riemann–von Mangoldt formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–von_Mangoldt_formula

    In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function. The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies

  7. Hardy–Littlewood zeta function conjectures - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood_zeta...

    These conjectures – on the distance between real zeros of (+) and on the density of zeros of (+) on intervals (, +] for sufficiently great >, = + and with as less as possible value of >, where > is an arbitrarily small number – open two new directions in the investigation of the Riemann zeta function.

  8. List of zeta functions - Wikipedia

    en.wikipedia.org/wiki/List_of_zeta_functions

    Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function.

  9. Selberg's zeta function conjecture - Wikipedia

    en.wikipedia.org/wiki/Selberg's_zeta_function...

    In particular, he proved that for any given numbers ε, ε 1 satisfying the conditions 0 < ε, ε 1 < 1 almost all intervals (T, T + H] for H ≥ exp[(ln T) ε] contain at least H (ln T) 1 −ε 1 zeros of the function ζ(1/2 + it). This estimate is quite close to the conditional result that follows from the Riemann hypothesis.